Skip to main content

Advertisement

Log in

Effect of Nb Content on Microstructures and Mechanical Properties of Ti-xNb-2Fe Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

A Correction to this article was published on 16 September 2019

This article has been updated

Abstract

β-Type Ti-Nb-based alloys exhibit satisfactory biocompatibility and low Young’s modulus for biomedical applications. The microstructure and mechanical properties of a series of Ti-(14, 16, 18, 20, 22, 24)Nb-2Fe alloys fabricated by arc melting were investigated by XRD, optical microscopy, and tensile tests. Both ω and α″ phases existed in the Ti-14Nb-2Fe alloy, while just a single β phase existed in the other alloys. Twinning is an important deformation mechanism that causes work hardening and twinning-induced plasticity. It was found in the Ti-(14, 16, 18, 20)Nb-2Fe alloys and not in the Ti-22Nb-2Fe alloy. The Ti-14Nb-2Fe alloy exhibited the highest tensile strength and the highest Young’s modulus owing to the existence of the ω phase. The tensile strength decreased gradually from 830 MPa (highest) for the Ti-14Nb-2Fe alloy to 540 MPa (lowest) for the Ti-24Nb-2Fe alloy with an increase in the Nb content. The Young’s modulus decreased from 90 GPa for the Ti-14Nb-2Fe alloy to 63 GPa for the Ti-22Nb-2Fe alloy and then increased to 71 GPa for the Ti-24Nb-2Fe alloy. Elongation shows the same trend as the Young’s modulus. The Ti-22Nb-2Fe alloy, with a low Young’s modulus of 63 GPa, tensile strength of 570 MPa, and 15% elongation, was found suitable for biomedical applications. The Ti-20Nb-2Fe alloy also exhibits a high tensile strength, a Young’s modulus ratio of 9.24 × 10−3, and 18% elongation and is thus considered another valuable Ti alloy for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 16 September 2019

    There was an error in the text of this article as originally published.

References

  1. M. Niinomi, M. Nakai, and J. Hieda, Development of New Metallic Alloys for Biomedical Applications, Acta Biomater., 2012, 8, p 3888–3903

    Article  CAS  Google Scholar 

  2. M.T. Mohammed, Z.A. Khan, and A.N. Siddiquee, Beta Titanium Alloys: The Lowest Elastic Modulus for Biomedical Applications: A Review, Int. J. Chem. Nucl. Metall. Mater. Eng. A, 2014, 8, p 726–731

    Google Scholar 

  3. S. Bahl, A.S. Krishnamurthy, S. Suwas, and K. Chatterjee, Controlled Nanoscale Precipitation to Enhance the Mechanical and Biological Performances of a Metastable β Ti-Nb-Sn Alloy for Orthopedic Applications, Mater. Des., 2017, 126, p 226–237

    Article  CAS  Google Scholar 

  4. C.D. Rabadia, Y.J. Liu, G.H. Cao, Y.H. Li, C.W. Zhang, T.B. Sercombe, H. Sun, and L.C. Zhang, High-Strength β Stabilized Ti-Nb-Fe-Cr Alloys with Large Plasticity, Mater. Sci. Eng. A, 2018, 732, p 368–377

    Article  CAS  Google Scholar 

  5. Y.H. Li, C. Yang, H.D. Zhao, S.G. Qu, X.Q. Li, and Y.Y. Li, New Developments of Ti-Based Alloys for Biomedical Applications, Materials, 2014, 7, p 1709–1800

    Article  Google Scholar 

  6. M. Abdel-Hady and M. Niinomi, Biocompatibility of Ti-Alloys for Long-Term Implantation, J. Mech. Behav. Biomed. Mater., 2013, 20, p 407–415

    Article  Google Scholar 

  7. M. Long and H.J. Rack, Titanium Alloys in Total Joint Replacement a Materials Science Perspective, Biomaterials, 1998, 19, p 1621–1639

    Article  CAS  Google Scholar 

  8. M. Lai, Y. Gao, B. Yuan, and M. Zhu, Effect of Pore Structure Regulation on the Properties of Porous TiNbZr Shape Memory Alloys for Biomedical Application, J. Mater. Eng. Perform., 2015, 24, p 136–142

    Article  CAS  Google Scholar 

  9. Z. Chen, Y. Liu, H. Jiang, M. Liu, C.H. Wang, and G.H. Cao, Microstructures and Mechanical Properties of Mn Modified, Ti-Nb Based Alloys, J. Alloys Compd., 2017, 723, p 1091–1097

    Article  CAS  Google Scholar 

  10. M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Ti based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review, Prog. Mater Sci., 2009, 54, p 397–425

    Article  CAS  Google Scholar 

  11. G.L. Zhao, G. Wen, Y. Song, and K. Wu, Near Surface Martensitic Transformation and Recrystallization in a Ti-24Nb-4Zr-7.9Sn Alloy Substrate After Application of a HA Coating by Plasma Spraying, Mater. Sci. Eng. C, 2011, 31, p 106–113

    Article  Google Scholar 

  12. P.E.L. Moraes, R.J. Contieri, E.S.N. Lopes, A. Robin, and R. Caram, Effects of Sn Addition on the Microstructure, Mechanical Properties and Corrosion Behavior of Ti-Nb-Sn Alloys, Mater. Charact., 2014, 96, p 273–281

    Article  CAS  Google Scholar 

  13. Q.K. Meng, Y.F. Huo, W. Ma, Y.W. Sui, J.Y. Zhang, S. Guo, and X.Q. Zhao, Design and Fabrication of a Low Modulus β-Type Ti-Nb-Zr Alloy by Controlling Martensitic Transformation, Rare Met., 2018, 37, p 789–794

    Article  CAS  Google Scholar 

  14. S.E. Haghighi, Y.J. Liu, G.H. Cao, and L.C. Zhang, Influence of Nb on the β → α″ Martensitic Phase Transformation and Properties of the Newly Designed Ti-Fe-Nb Alloys, Mater. Sci. Eng. C, 2016, 60, p 503–513

    Article  Google Scholar 

  15. H.C. Hsu, S.C. Wu, S.K. Hsu, K.H. Hsu, and W.F. Ho, Machinability Evaluation of Ti-5Nb-xFe Alloys for Dental Applications, J. Mater. Eng. Perform., 2015, 24, p 1332–1339

    Article  CAS  Google Scholar 

  16. D.C. Zhang, Y.F. Mao, Y.L. Li, J.J. Li, M. Yuan, and J.G. Lin, Effect of Ternary Alloying Elements on Microstructure and Superelastictity of Ti-Nb Alloys, Mater. Sci. Eng. A, 2013, 559, p 706–710

    Article  CAS  Google Scholar 

  17. H.C. Hsu, S.K. Hsu, S.C. Wu, C.J. Lee, and W.F. Ho, Structure and Mechanical Properties of As-Cast Ti-5Nb-xFe Alloys, Mater. Charact., 2010, 61, p 851–858

    Article  CAS  Google Scholar 

  18. S.E. Haghighi, Y.J. Liu, G.H. Cao, and L.C. Zhang, Phase Transition, Microstructural Evolution and Mechanical Properties of Ti-Nb-Fe Alloys Induced by Fe Addition, Mater. Des., 2016, 97, p 279–286

    Article  Google Scholar 

  19. C.M. Lee, W.F. Ho, C.P. Ju, and J.H.C. Lin, Structure and Properties of Titanium-25 Niobium-x Iron Alloys, J. Mater. Sci. Mater. Med., 2002, 13, p 695–700

    Article  CAS  Google Scholar 

  20. É.S.N. Lopes, C.A.F. Salvador, D.R. Andrade, A. Cremasco, K.N. Campo, and R. Caram, Microstructure, Mechanical Properties, and Electrochemical Behavior of Ti-Nb-Fe Alloys Applied as Biomaterials, Metall. Mater. Trans. A, 2016, 47, p 3213–3226

    Article  CAS  Google Scholar 

  21. Y. Bao, M. Zhang, Y. Liu, J.J. Yao, Z.M. Xiu, M. Xie, and X.D. Sun, High Strength, Low Modulus and Biocompatible Porous Ti-Mo-Fe Alloys, J. Porous Mater., 2014, 21, p 913–919

    Article  Google Scholar 

  22. D.R. Askeland and P.P. Phulé, Essentials of Materials Science and Engineering, Reprinted by Tsinghua University Press, Beijing, 2005, p 233

    Google Scholar 

  23. E. Bertrand, P. Castany, I. Péron, and T. Gloriant, Twinning System Selection in a Metastable β-Titanium Alloy by Schmid Factor Analysis, Scr. Mater., 2011, 64, p 1110–1113

    Article  CAS  Google Scholar 

  24. F.Q. Hou, S.J. Li, Y.L. Hao, and R. Yang, Nonlinear Elastic Deformation Behaviour of Ti-30Nb-12Zr Alloys, Scr. Mater., 2010, 63, p 54–57

    Article  CAS  Google Scholar 

  25. M. Niinomi, T. Akahori, and M. Nakai, In situ X-ray Analysis of Mechanism of Nonlinear Super Elastic Behavior of Ti-Nb-Ta-Zr System Beta-Type Titanium Alloy for Biomedical Applications, Mater. Sci. Eng. C, 2008, 28, p 406–413

    Article  CAS  Google Scholar 

  26. X. Ji, S. Emura, X.H. Min, and K. Tsuchiya, Strain-Rate Effect on Work-Hardening Behavior in β-Type Ti-10Mo-1Fe Alloy with TWIP Effect, Mater. Sci. Eng. A, 2017, 707, p 701–707

    Article  CAS  Google Scholar 

  27. Y.H. Hon, J.Y. Wang, and Y.N. Pan, Composition/Phase Structure and Properties of Titanium-Niobium Alloys, Mater. Trans., 2003, 44, p 2384–2390

    Article  CAS  Google Scholar 

  28. M. Abdel-Hady, K. Hinoshita, and M. Morinaga, General Approach to Phase Stability and Elastic Properties of β-Type Ti Alloys Using Electronic Parameters, Scr. Mater., 2006, 55, p 477–480

    Article  CAS  Google Scholar 

  29. P. Laheurte, A. Eberhardt, and M. Philippe, Influence of the Microstructure on the Pseudoelasticity of a Metastable Beta Titanium Alloy, Mater. Sci. Eng. A, 2005, 396, p 223–230

    Article  Google Scholar 

  30. Q. Li, G.H. Ma, J.J. Li, M. Niinomi, M. Nakai, Y. Koizumi, D.X. Wei, T. Kakeshita, T. Nakano, A. Chiba, X.Y. Liu, K. Zhou, and D. Pan, Development of Low-Young’s Modulus Ti-Nb-Based Alloys with Cr Addition, J. Mater. Sci., 2019, 54, p 8675–8683

    Article  CAS  Google Scholar 

  31. B. Sun, X.L. Meng, Z.Y. Gao, W. Cai, and L.C. Zhao, Effect of Annealing Temperature on Shape Memory Effect of Cold-Rolled Ti-16 at.%Nb Alloy, J. Alloys Compd., 2017, 715, p 16–20

    Article  CAS  Google Scholar 

  32. L.L. Chang, Y.D. Wang, and Y. Ren, In-situ Investigation of Stress-Induced Martensitic Transformation in Ti-Nb Binary Alloys with Low Young’s Modulus, Mater. Sci. Eng. A, 2016, 651, p 442–448

    Article  CAS  Google Scholar 

  33. Q. Li, M. Niinomi, M. Nakai, Z.D. Cui, S.L. Zhu, and X.J. Yang, Effect of Zr on Super-Elasticity and Mechanical Properties of Ti-24 at% Nb-(0, 2, 4) at% Zr Alloy Subjected to Aging Treatment, Mater. Sci. Eng. A, 2012, 536, p 197–206

    Article  CAS  Google Scholar 

  34. J.M. Chavesa, O. Florêncio, P.S. Silva, Jr., P.W.B. Marques, and C.R.M. Afonso, Influence of Phase Transformations on Dynamical Elastic Modulus and Anelasticity of Beta Ti-Nb-Fe Alloys for Biomedical Applications, J. Mech. Behav. Biomed. Mater., 2015, 46, p 184–196

    Article  Google Scholar 

  35. Y. Abd-elrhman, M.A.-H. Gepreel, A. Abdel-Moniema, and S. Kobayashi, Compatibility Assessment of New V-Free Low-Cost Ti-4.7Mo-4.5Fe Alloy for Some Biomedical Applications, Mater. Des., 2016, 97, p 445–453

    Article  CAS  Google Scholar 

  36. A. Biesiekierski, J. Lin, Y. Li, D. Ping, Y. Yamabe-Mitarai, and C. Wen, Investigations into Ti-(Nb, Ta)-Fe Alloys for Biomedical Applications, Acta Biomater., 2016, 32, p 336–347

    Article  CAS  Google Scholar 

  37. H. Matsumoto, S. Watanabe, and S. Hanada, Microstructures and Mechanical Properties of Metastable β TiNbSn Alloys Cold Rolled and Heat Treated, J. Alloys Compd., 2007, 439, p 146–155

    Article  CAS  Google Scholar 

  38. M. Niinomi, Mechanical Properties of Biomedical Titanium Alloys, Mater. Sci. Eng. A, 1998, 243, p 231–236

    Article  Google Scholar 

  39. K. Wang, The Use of Titanium for Medical Applications in the USA, Mater. Sci. Eng. A, 1996, 213, p 134–137

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Natural Science Foundation of Shanghai, China (No. 15ZR1428400), Shanghai Key Technology Support Program (No. 16060502400), National Natural Science Foundation of China (No. 61504080, 51771120 and 51304136), the project of Creation of Life Innovation Materials for Interdisciplinary and International Researcher Development, Tohoku University, Japan sponsored by Ministry, Education, Culture, Sports, Science and Technology, Japan, and the Grant-in Aid for Scientific Research (B) (No. 17H03419) from Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: In the Microstructure section of the Results, “\( {332}_{\beta} \langle113\rangle_{\beta} \)” should be “\( \{332\}_{\beta} \langle113\rangle_{\beta} \)” (in two places) because “\( \{332\}_{\beta} \langle113\rangle_{\beta} \)” is the expression of twinning.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Miao, P., Li, J. et al. Effect of Nb Content on Microstructures and Mechanical Properties of Ti-xNb-2Fe Alloys. J. of Materi Eng and Perform 28, 5501–5508 (2019). https://doi.org/10.1007/s11665-019-04250-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04250-5

Keywords

Navigation